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Abstract

Trends in terrestrial temperature variability are perhaps more
relevant for species viability than trends in mean temperature.
In this paper, we develop methodology for estimating such
trends using multi-resolution climate data from polar orbiting
weather satellites. We derive two novel algorithms for com-
putation that are tailored for dense, gridded observations over
both space and time. We evaluate our methods with a simula-
tion that mimics these data’s features and on a large, publicly
available, global temperature dataset with the eventual goal of
tracking trends in cloud reflectance temperature variability.

1 Introduction

The amount of sunlight reflected from clouds is among the
largest sources of uncertainty in climate prediction (Boucher
et al. 2013). But climate models fail to reproduce global
cloud statistics, and understanding the reasons for this failure
is a grand challenge of the World Climate Research Pro-
gramme (Bony et al. 2015). While numerous studies have
examined the overall impacts of clouds on climate variabil-
ity (Myers, Mechoso, and DeFlorio 2018; Grise et al. 2013;
Bender, Ramanathan, and Tselioudis 2012), such investiga-
tions have been hampered by the lack of a suitable dataset.
Ideal data would have global coverage at high spatial res-
olution, a long enough record to recover temporal trends,
and be multispectral (Wielicki et al. 2013). To address this
gap, current work (Staten et al. 2016; Schreier et al. 2010;
Kahn et al. 2007) seeks to create a spectrally-detailed dataset
by combining radiance data from Advanced Very High
Resolution Radiometer imagers with readings from High-
resolution Infrared Radiation Sounders, instruments onboard
legacy weather satellites. In anticipation of this new dataset,
our work develops novel methodology for examining the
trends in variability of climate data across space and time.

1.1 Variability Rather Than Average

Trends in terrestrial temperature variability are perhaps more
relevant for species viability than trends in mean temper-
ature (Huntingford et al. 2013), because an increase in
temperature variability will increase the probability of ex-
treme hot or cold outliers (Vasseur et al. 2014). Recent
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climate literature suggests that it is more difficult for so-
ciety to adapt to these extremes than to the gradual increase
in the mean temperature (Hansen, Sato, and Ruedy 2012;
Huntingford et al. 2013). Furthermore, the willingness of pop-
ular media to emphasize the prevalence extreme cold events
coupled with a fundamental misunderstanding of the rela-
tionship between climate (the global distribution of weather
over the long run) and weather (observed short-term, local-
ized behavior) leads to public misunderstanding of climate
change. In fact, a point of active debate is the extent to which
the observed increased frequency of extreme cold events
in the northern hemisphere can be attributed to increases
in temperature variance rather than to changes in mean
climate (Screen 2014; Fischer, Beyerle, and Knutti 2013;
Trenberth et al. 2014).

Nevertheless, research examining trends in the volatility
of spatio-temporal climate data is scarce. Hansen, Sato, and
Ruedy (2012) studied the change in the standard deviation
(SD) of the surface temperature in the NASA Goddard Insti-
tute for Space Studies gridded temperature dataset by exam-
ining the empirical SD at each spatial location relative to that
location’s SD over a base period and showed that these esti-
mates are increasing. Huntingford et al. (2013) took a similar
approach in analyzing the ERA-40 data set. They argued that,
while there is an increase in the SDs from 1958-1970 to 1991-
2001, it is much smaller than found by Hansen, Sato, and
Ruedy (2012). Huntingford et al. (2013) also computed the
time-evolving global SD from the detrended time-series at
each position and argued that the global SD has been stable.

These and other related work (e.g., Rhines and Huybers
2013) have several shortcomings which our work seeks to
remedy. First, no statistical analysis has been performed to
examine if the changes in the SD are statistically significant.
Second, the methodologies for computing the SDs are highly
sensitive to the choice of base period. Third, and most impor-
tantly, temporal and spatial correlations between observations
are completely ignored.

Importantly, existing literature and our present work exam-
ines variance (rather than the mean) for a number of reasons.
First, instrument bias in the satellites increases over time so
examining the mean over time conflates that bias with any
actual change in mean (though the variance is unaffected).
Second, extreme weather events (hurricanes, droughts, wild-
fires in California, heatwaves in Europe) may be driven more
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strongly by increases in variance than by increases in mean.
Finally, even if the global mean temperature is constant, there
may still be climate change. In fact, atmospheric physics
suggests that, across space, average temperatures should not
change (extreme cold in one location is offset by heat in an-
other). But if swings across space are becoming more rapid,
then, even with no change in mean global temperature over
time, increasing variance can lead to increases in the preva-
lence of extreme events.

1.2 Main Contributions

The main contribution of this work is to develop a new
methodology for detecting the trend in the volatility of spatio-
temporal data. In this methodology, the variance at each
position and time are estimated by minimizing the penalized
negative loglikelihood. Following methods for mean estima-
tion (Tibshirani 2014), we penalize the differences between
the estimated variances which are temporally and spatially
“close”, resulting in a generalized LASSO problem. How-
ever, in our application, the dimension of this optimization
problem is massive, so the standard solvers are inadequate.

We develop two algorithms which are computationally
feasible on extremely large data. In the first method, we
adopt an optimization technique called alternating direction
method of multipliers (ADMM, Boyd et al. 2011), to divide
the total problem into several sub-problems of much lower
dimension and show how the total problem can be solved by
iteratively solving these sub-problems. The second method,
called linearized ADMM (Parikh and Boyd 2014), solves the
main problem by iteratively solving a linearized version. We
will compare the benefits of each method.

Our main contributions are as follows:

1. We propose a method for nonparametric variance estima-
tion for a spatio-temporal process and discuss the rela-
tionship between our methods and those existing in the
machine learning literature (Section 2).

2. We derive two alternating direction method of multiplier
algorithms to fit our estimator when applied to very large
data (Section 3). We give situations under which each
algorithm is most likely to be useful. Open-source Python
code is available.1

3. Because the construction of satellite-based datasets is on-
going and currently proprietary, we illustrate our methods
on a large, publicly available, global temperature dataset.
The goal is to demonstrate the feasibility of these meth-
ods for tracking world-wide trends in variance in standard
atmospheric data and a simulation constructed to mimic
these data’s features (Section 4).

While the motivation for our methodology is its application
to large, gridded climate data, we note that our algorithms
are easily generalizable to spatio-temporal data under con-
vex loss, e.g. exponential family likelihood. Furthermore the
spatial structure can be broadly construed to include general
graph dependencies. Our current application uses Gamma
likelihood which lends itself well to modeling trends in pollu-
tant emissions or in astronomical phenomena like microwave

1github.com/dajmcdon/VolatilityTrend

background radiation. Volatility estimation in oil and natu-
ral gas markets or with financial data is another possibility.
Our methods can also be applied to resting-state fMRI data
(though the penalty structure changes).

2 Smooth Spatio-temporal Variance

Estimation
Kim et al. (2009) proposed ℓ1-trend filtering as a method for
estimating a smooth, time-varying trend. It is formulated as
the optimization problem

min
β

1

2

T
∑

t=1

(yt − βt)
2 + λ

T−1
∑

t=2

|βt−1 − 2βt + βt+1|

or equivalently:

min
β

1

2
‖y − β‖

2
2 + λ ‖Dtβ‖1 (1)

where y = {yt}
T
t=1 is an observed time-series, β ∈ R

T is
the smooth trend, Dt is a (T − 2) × T matrix, and λ is a
tuning parameter which balances fidelity to the data (small
errors in the first term) with a desire for smoothness. Kim
et al. (2009) proposed a specialized primal-dual interior
point (PDIP) algorithm for solving (1). From a statistical
perspective, (1) can be viewed as a constrained maximum
likelihood problem with independent observations from a
normal distribution with common variance, yt ∼ N(βt, σ

2),
subject to a piecewise linear constraint on β. Alternatively, so-
lutions to (1) are maximum a posteriori Bayesian estimators
based on Gaussian likelihood with a special Laplace prior
distribution on β. Note that the structure of the estimator is
determined by the penalty function λ ‖Dtβ‖1 rather than any
parametric trend assumptions—autoregressive, moving aver-
age, sinusoidal seasonal component, etc. The resulting trend
is therefore essentially nonparametric in the same way that
splines are nonparametric. In fact, using squared ℓ2-norm as
the penalty instead of ℓ1 results exactly in regression splines.

2.1 Modifications for Variance

Inspired by the ℓ1-trend filtering algorithm, we propose a
non-parametric model for estimating the variance of a time-
series. To this end, we assume that at each time step t, there is
a parameter ht such that the observations yt are independent
normal variables with zero mean and variance exp(ht). The
negative log-likelihood of the observed data in this model
is l(y | h) ∝ −

∑

t ht − y2t e
−ht . Crucially, we assume

that the parameters ht vary smoothly and estimate them by
minimizing the penalized, negative log-likelihood:

min
h

−l(y | h) + λ ‖Dth‖1 (2)

where Dt has the same structure as above.
As with (1), one can solve (2) using the PDIP algorithm

(as in, e.g., cvxopt, Andersen, Dahl, and Vandenberghe
2013). In each iteration of PDIP we need to compute a search
direction by taking a Newton step on a system of nonlinear
equations. For completeness, we provide the details in Ap-
pendix A of the Supplement, where we show how to derive
the dual of this optimization problem and compute the first
and second derivatives of the dual objective function.
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2.2 Adding Spatial Constraints

The method in the previous section can be used to estimate
the variance of a single time-series. Here we extend this
method to the case of spatio-temporal data.

At a specific time t, the data are measured on a grid of
points with nr rows and nc columns for a total of S =
nr × nc spatial locations. Let yijt denote the value of the

observation at time t on the ith row and jth column of the
grid, and hijt denote the corresponding parameter. We seek
to impose both temporal and spatial smoothness constraints
on the parameters. Specifically, we seek a solution for h
which is piecewise linear in time and piecewise constant in
space (although higher-order smoothness can be imposed
with minimal alterations to the methodology). We achieve
this goal by solving the following optimization problem:

min
h

∑

i,j,t

hijt + y2ijte
−hijt

+ λt

∑

i,j

T−1
∑

t=2

∣

∣hij(t−1) − 2hijt + hij(t+1)

∣

∣ (3)

+ λs

∑

t,j

nr−1
∑

i=1

∣

∣hijt − h(i+1)jt

∣

∣+ λs

∑

t,i

nc−1
∑

j=1

∣

∣hijt − hi(j+1)t

∣

∣

The first term in the objective is proportional to the neg-
ative log-likelihood, the second is the temporal penalty for
the time-series at each location (i, j), while the third and
fourth, penalize the difference between the estimated vari-
ance of two vertically and horizontally adjacent points, re-
spectively. The spatial component of this penalty is a spe-
cial case of trend filtering on graphs (Wang et al. 2016)
which penalizes the difference between the estimated val-
ues of the signal on the connected nodes (though the like-
lihood is different). As before, we can write (3) in ma-
trix form where h is a vector of length TS and Dt is re-

placed by D ∈ R
(Nt+Ns)×(T ·S) (see Appendix C), where

Nt = S · (T −2) and Ns = T · (2nrnc−nr) are the number
of temporal and spatial constraints, respectively. Then, as
we have two different tuning parameters for the temporal

and spatial components, we write Λ =
[

λt1
⊤

Nt
, λs1

⊤

Ns

]⊤

leading to:2

min
h

−l(y | h) + Λ⊤|Dh|. (4)

2.3 Related Work

Variance estimation for financial time series has a lengthy
history, focused especially on parametric models like the
generalized autoregressive conditional heteroskedasticity
(GARCH) process (Engle 2002) and stochastic volatility mod-
els (Harvey, Ruiz, and Shephard 1994). These models (and
related AR processes) are specifically for parametric mod-
elling of short “bursts” of high volatility, behavior typical of
financial instruments. Parametric models for spatial data go
back at least to (Besag 1974) who proposed a conditional
probability model on the lattice for examining plant ecology.

More recently, nonparametric models for both spatial and
temporal data have focused on using ℓ1-regularization for

2Throughout the paper, we use |x| for both scalars and vectors.
For vectors we use this to denote a vector obtained by taking the
absolute value of each entry of x.

trend estimation. Kim et al. (2009) proposed ℓ1-trend filter-
ing for univariate time series, which forms the basis of our
methods. These methods have been generalized to higher
order temporal smoothness (Tibshirani 2014), graph de-
pendencies (Wang et al. 2016), and, most recently, small,
time-varying graphs (Hallac et al. 2017).

Our methodology is similar in flavor to (Hallac et al. 2017)
or related work in (Gibberd and Nelson 2017; Monti et al.
2014), but with several fundamental differences. These pa-
pers aim to discover the time-varying structure of a network.
To achieve this goal, they use Gaussian likelihood with un-
known precision matrix and introduce penalty terms which
(1) encourage sparsity among the off-diagonal elements and
(2) discourage changes in the estimated inverse covariance
matrix from one time-step to the next. Our goal in the present
work is to detect the temporal trend in the variance of each
point in the network, but the network is known (correspond-
ing to the grid over the earth) and fixed in time. To apply
these methods in our context (e.g., Hallac et al. 2017, Eq. 2),
we would enforce complete sparsity on the off-diagonal ele-
ments (since they are not estimated) and add a new penalty to
enforce spatial behavior across the diagonal elements. Thus,
(4) is not simply a special case of these existing methods.
Finally, these papers examine networks with hundreds of
nodes and dozens to hundreds of time points. As discussed
next, our data are significantly larger than these networks and
attempting to estimate a full covariance would be prohibitive,
were it necessary.

3 Optimization Methods

For a spatial grid of size S and T time steps, D in Equation
(4) will have 3TS − 2S − Tnr rows and TS columns. For a
1◦ × 1◦ grid over the entire northern hemisphere and daily
data over 10 years, we have S = 90× 360 ≈ 32, 000 spatial
locations and T = 3650 time points, so D has approximately
108 columns and 108 rows. In principal, we could solve (4)
using PDIP as before, however, each iteration requires solv-
ing a linear system of equations which depends on D⊤D.
Therefore, applying the PDIP directly is infeasible.3

In the next section, we develop two algorithms for solving
this problem efficiently. The first casts the problem as a so-
called consensus optimization problem (Boyd et al. 2011)
which solves smaller sub-problems using PDIP and then
recombines the results. The second uses proximal methods
to avoid matrix inversions. Either may be more appropriate
depending on the particular computing infrastructure.

3.1 Consensus Optimization

Consider an optimization problem of the form minh f(h),
where h ∈ R

n is the global variable and f(h) : R
n →

R ∪ {+∞} is convex. Consensus optimization breaks this
problem into several smaller sub-problems that can be solved
independently in each iteration.

3We note that D is a highly structured, sparse matrix, but, unlike
trend filtering alone, it is not banded. We are unaware of general
linear algebra techniques for inverting such a matrix, despite our
best efforts to find them.
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